Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling

نویسندگان

  • Jinyu Gao
  • Guoqiang Tang
  • Yang Hong
چکیده

Spaceborne precipitation radars are powerful tools used to acquire adequate and highquality precipitation estimates with high spatial resolution for a variety of applications in hydrological research. The Global Precipitation Measurement (GPM) mission, which deployed the first spaceborne Kaand Ku-dual frequency radar (DPR), was launched in February 2014 as the upgraded successor of the Tropical Rainfall Measuring Mission (TRMM). This study matches the swath data of TRMM PR and GPM DPR Level 2 products during their overlapping periods at the global scale to investigate their similarities and DPR’s improvements concerning precipitation amount estimation and type classification of GPM DPR over TRMM PR. Results show that PR and DPR agree very well with each other in the global distribution of precipitation, while DPR improves the detectability of precipitation events significantly, particularly for light precipitation. The occurrences of total precipitation and the light precipitation (rain rates < 1 mm/h) detected by GPM DPR are ~1.7 and ~2.53 times more than that of PR. With regard to type classification, the dual-frequency (Ka/Ku) and single frequency (Ku) methods performed similarly. In both inner (the central 25 beams) and outer swaths (1–12 beams and 38–49 beams) of DPR, the results are consistent. GPM DPR improves precipitation type classification remarkably, reducing the misclassification of clouds and noise signals as precipitation type “other” from 10.14% of TRMM PR to 0.5%. Generally, GPM DPR exhibits the same type division for around 82.89% (71.02%) of stratiform (convective) precipitation events recognized by TRMM PR. With regard to the freezing level height and bright band (BB) height, both radars correspond with each other very well, contributing to the consistency in stratiform precipitation classification. Both heights show clear latitudinal dependence. Results in this study shall contribute to future development of spaceborne radar precipitation retrievals and benefit hydrological and meteorological research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microphysical Retrieval from Dual-frequency Gpm P7.1 Observations

Following the success of the Tropical Rainfall Measuring Mission (TRMM), considerable effort has been directed at the next generation of space-based precipitation radar (PR) to be launched aboard the Global Precipitation Measuring (GPM) core satellite. The GPM mission concept is centered on the deployment of a core observatory satellite with an active dual-frequency precipitation radar (DPR), o...

متن کامل

Simulation of Space-borne Radar Observations of Precipitation at Ku and Ka Band

Global Precipitation Measurement (GPM) is poised to be the next generation precipitation observations from space after the TRMM mission. The GPM will carry a dual-frequency precipitation radar (DPR), operating at Ku and Ka band frequencies. Since space-borne precipitation observations have never been done in Ka band before, extensive research work on dualfrequency radar, including electromagnet...

متن کامل

Cloud and Precipitation Observation by Spaceborne Radar in Japan: Current and Future Missions

The Tropical Rainfall Measuring Mission (TRMM) is a Japan-US joint satellite mission which equips the world first spaceborne precipitation radar (PR) as well as microwave imager (TMI) and has been producing very valuable precipitation data more than twelve years. This long term precipitation record including vertical profile information from the TRMM PR made it possible to provide not only the ...

متن کامل

The NASA Dual-Frequency Dual-Polarized Doppler Radar (D3R) System For GPM Ground Validation

Following on the successful introduction of single-frequency (Ku-Band) weather radar onboard the Tropical Rain Measuring Mission (TRMM) satellite in 1997, the Global Precipitation Measurement (GPM) mission attempts to advance further the goal of making global scale precipitation observations by deploying the next generation of satellite-borne weather radars. The GPM satellite will carry a Ka-Ku...

متن کامل

Global Precipitation Mission (GPM) and Dual-Wavelength Radar (DPR)

Global precipitation measurement is essential not only for the research of the global change but also for the water resources management. Currently, satellite precipitation measurement is not sufficient for the detailed study of the precipitation and is far from enough for the water resources management which requires very high spatial and temporal resolution. To fill the gap at least partly, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017